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Abstract 

The concept of inbreeding in human beings and its effect have been discussed in this research. 

Inbred unions are characterized by greater fertility, although they also result in higher levels of 

post-natal morbidity and mortality due to the expression of detrimental recessive genes inherited 

from a common ancestor(s). Artificial selection of the parents was used to determine the 

frequencies of the offspring and a five state Markov Chain model was used to determine the 

pattern of gene distribution. The paper is meant to reduce homozygote recessive gene which can 

be a carrier of any particular trait in a given population. The same model can also be applied to 

reduce homozygote dominant gene. The result from table 8 shows that, when genetic counseling 

is carried out with the various mating pattern as shown in the first column of table 5, the gene of 

the homozygote recessive will be eradicated within a given period of time from the population,  

irrespective of the Initial Probability State Vector (IPSV). This selection model will not only 

reduce the gene of the homozygote recessive, but also that of the heterozygote as we can see 

from table 8.     

Keywords: Markov Chain, Inbreeding, Natural Selection, Artificial Selection.  

Introduction. 

Theory of Inbreeding: The word “consanguinity”, carries unsound and confusing connotations. 

Its etymology from the Latin word con (with) and sand (blood) harks back to the pre-mendelian 

days when the blood was thought to be the vehicle of genetic transmission from one generation 

to the next. Such popular expression such as “ he stems from bad blood”, “ blood is thicker than 

water”, “blood brother”, “blood ties” and my own flesh and blood” demonstrate the inroads of 

this false theory on our everyday speech. Unfortunately, the common synonym “inbreeding” (as 

opposed to “out crossing”) also carries odious connotation for man. (Choji & Garba,  2004).  

Generally, the fundamental topic in the study of inbreeding is the concept of genetic relatedness. 

It is common to notice two individuals possess the same gene as one another because of common 

ancestor for example brother and sister must share even more genes because they have same 

parents, but they might conceivably share even more gene because their grand parents might also 

be related to one another. Hence, the theory of genetic relatedness will help solve the problem of 

how similar genetically, two individuals are to each other on the basis of non-ancestry. It also 

provides an important tool for answering other questions relating to the role of different mating 

systems in organizing the genotype variation and the analysis of phenotype resemblance between 

relatives. and (Clarke, 1981). 
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Natural Selection: This is the mechanism by which new species are formed from pre-existing 

species. This hypothesis is based on three observations and two deductions which may be 

summarized as follows. Observation 1. Individuals within a population produces on average 

more offspring than are needed to replace themselves (Fred,1976). Observation  2. The numbers 

of individuals in a population remains approximately constant. Deduction 1. Many individual 

fails to survive or reproduce. There is a struggle for existence within a population. Observation 3. 

Variation exists within all population. Deduction 2. In the struggle for existence, those 

individuals showing variations best adapted to their environment have a reproductive advantage 

and produce more offspring than less well-adapted organisms. Deduction 2 offers a hypothesis 

called natural selection which provide a mechanism accounting for evaluation (Choji & Garba,  

2004).  

Artificial Selection: The basis of artificial selection is the isolation of natural population and the 

selection breeding of organisms showing characteristics or traits which have some usefulness to 

humans (James & Clarke, 1981). The importance of genetic diversity in Livestock is directly 

related to the need for genetic improvement of economic traits as well as facilitates rapid 

adaptation to potential changes in breeding goals. Several goat breeds have been evaluated for 

genetic variation based on morphological, physiological, pathological, productive, reproductive 

and behavioral feature, (Awobajo, 2018). Sun et al., (2017) were able to established that 

inbreeding mating does decrease the mean fitness of polygenic population in general, but does 

not decrease the mean fitness with mixed dominant-recessive genotype.  

Brother-Sister Mating: Brother-sister mating are the most extreme form of inbreeding that can 

occur in most animals. Even hermaphroditic forms like many snails and worms cannot self 

fertilize. Selfing is a process reserved principally for plants. Brother-sister mating is not nearly as 

common among animals in nature as in selfing among plants. The main use of the theory of 

brother-sister mating is with experimental breeding programs.  (Choji & Edemenana, 2001). It is 

necessary to estimate the likely effects of inbreeding on the fundamental economic traits and 

physiological health (Tiaji et al., 2020). 

Markov Chain Model                    

A markov chain Model is one of the vital tools used in stochastic process. The construction of 

Markov Chain require two basic ingredients, namely a transition matrix and an initial 

distribution. So by definition of transition matrix we assume a finite set S ,where  mS ,...,1

states. Assign to each pair   2, Sji  of states a real number 
ijP  such that the properties. 

.1   2,0 SjiPij 
          (1) 

.2 



sj

ij SiP 1           (2) 

are satisfied and define the transition matrix  by P
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                    (3) 

Let  be a sequence of random variable with values in  . Here,  denotes the time at 

which the state occurs. So far, we have only specified the ingredients for the evolvement of 

probabilities throughout the time. To complete the construction of Markov Chain, we need to 

specify an initial distribution. Hence, we denote Dsas the set of discrete distributions on , such 

that 

                     (4)  

where we represent distributions as row vectors. We call   ssii DPP 


:00  the initial 

distribution of the chain  if  for all states .A discrete time Markov 

process is completely described by its square transition matrix .  means the probability of 

transition from state  to state .  implies the probability of the system being in state , at 

time . The probability that the system in state  at  is given by 

                         (5)  

In general, we can write         

                (6)  

  indicates the transpose of the matrix or vector as the case may be  
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(Choji & Edemenang, 2001). Probability state vector is a vector composed of state probabilities, 

which sum up to 1. A state is a situation that a process can assume at any given time and are 

mutually exclusive and exhaustive. If for instance then for and for 

 

Transition matrix, is a matrix of conditional probabilities of moving from one state to another. 

Subsequent, probability state vectors can be obtained as follows 

                     (7) 

 
 

Derivation of The Transition Matrix for Brother-Sister Mating  

Brother –Sister matings are the most extreme form of inbreeding that can occur in most animals. 

Even hermaphroditic forms like many snails and worms cannot self-fertilize. Selfing is a process 

reserved principally for plants. But today we see many nations passing law for different types of 

marriage without considering the associated danger. This research will therefore review the work 

of Jonathan Roughgarden on the danger of Brother-Sister mating and also, proffer solution if at 

all Sib mating must take place. 

According to Roughgarden (1997) there are six possible combination in Brother- Sister mating 

for a trait that is either homozygote dominant or homozygote recessive. These are the six 

combinations aaaaaaAaAaAaaaAAAaAAAAAA * . If we let 

ttttt TSRQP ,,,, denote the fraction of all mating that are of type ,AaAAAAAA   

respectively, we can develop simple formulas to predict   ,,, 11 tttt QPfromQP  based on 

the assumption that all mating occurs between brother and sister. 

This combination could be seen in the table 1below. 

Table 1    Fraction of all mating types 

 Kind  of Offspring Crossing    

Parental Mating  AA*AA AA*Aa AA*aa Aa*Aa Aa*aa aa*aa 

AA*AA 1 0 0 0 0 0 

AA*Aa 1/4 ½ 0 ¼ 0 0 

AA*aa 0 0 0 1 0 0 

Aa*Aa 1/16 ¼ 1/8 ¼ ¼ 1/16 

Aa*aa 0 0 0 ¼ ½ ¼ 

aa*aa 0 0 0 0 0 1 
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From table 1 above, we can write down the equations for the variables  TandSRQP ,,,  by 

summing down the column as defined in equation 8 bellow. 

tttt
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                (8) 

Equations 8 are the fractions of the different mating combinations at t+1, given the fraction at 

time t. 

We can determine D, H, and R, the genotype frequencies, given the mating type frequencies P, 

Q, and R,…,Then D, H, and R, are found as follows: 

tttt SQPD
4
1

2
1

1                        (9) 

The frequency of AA  at t+1 equals all the offspring from AAAA   mating plus half the 

offspring of AaAA   mating, plus one quarter of the offspring from AaAa   mating. Similarly,                             

ttt

ttttt

UTSR

TSRQH









2
1

4
1

1

2
1

2
1

2
1

1                 (10)  

As we iterate the equation 9 and 10, we discovered that there is loss of heterozygosity with 

corresponding increase in the proportion of homozygotes. This gene movement shows that 

inbreeding will increase the risk for any trait that either homozygote dominant or recessive in 

any given population. 

In order overcome such risk, we can apply artificial selection which at the long run will wipe 

away trait from the population and that is major focus of this research. 

Artificial Selection in Favour of Homozygote Dominanat Gene                                                       

In order to eradicate the trait which is homozygote recessive from the population, the following 

type of mating among Brother-Sister was adopted 

Table 2 Parental Crossing of AA
 
* Aa                           

  AA
 
* AA AA*Aa  AA*aa  Aa

 
* Aa Aa

 
* aa 

 PC   AA
 
* AA        1        0         0         0         0 

 

From the figure above, the offspring of AA
 
* AA mating are  AA

 
so these offspring can 

obviously only form AA
 
* AA among themselves. The second row is  

Table 3 Parental Crossing of AA
 
* Aa                               
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 AA
 
* AA  AA

 
* Aa AA

 
* aa  Aa

 
* Aa  Aa

 
* aa  

 P C AA
 
* Aa              1/4        1/2       0       1/4         0 

 

This row is simple. The offspring of an AA
 
* Aa parental cross are half AA and half Aa. 

Therefore, when these offspring mate among themselves (remember they must mate among 

themselves because there is brother-sister mating), they will form AA
 
* AA, AA

 
* Aa and           

AA
 
* Aa combinations in the ratio of .,,

4
1

2
1

4
1 and  The most complicated row is for crosses 

among the offspring of Aa
 
*Aa parents. The offspring themselves are .,,

4
1

2
1

4
1 aaandAaAA  Thus 

they will form with one another all possible combinations in the following ratios:       

Table 4  Parental Crossing of Aa
 
* Aa  

 AA
 
*AA    AA

 
*Aa  AA

 
*aa Aa

 
*Aa   Aa

 
*aa 

 P C    Aa
 
*Aa        1/16        1/4         1/8         1/4         1/4 

   

Other parental crossing and their corresponding offspring were derived in the same way. And the 

various frequencies of the offspring can be represented in a matrix as shown below.  

Table 5    fraction of all mating types 

 Kind  of Offspring Crossing   

Parental  

Mating 

AA
 
*AA  AA

 
*Aa AA

 
*aa Aa

 
*Aa

 
Aa

 
*aa 

AA
 
*AA 1 0 0 0 0 

AA
 
*Aa 1/4 ½ 0 ¼ 0 

AA
 
*aa 0 0 0 1 0 

Aa
 
*Aa 1/16 ¼ 1/8 ¼ ¼ 

Aa
 
*aa 0 0 0 ¼ 1/2 

 

Since we are making selection against any trait that is homozygote recessive, we therefore 

exclude the parental crossing of affected male mating with affected female that is aa
 
*aa and 

also, the offspring crossing of affected male and female that emanated from the parental crossing 

of affected male and a female who is a carrier. Hence the last row and the last column in table 1 

was deliberately omitted, thereby giving us a 5 by 5 matrix. 

To develop these formulas ,1tP we need to summarize some information in the form of a table, 

in which the mating types that can occur among the offspring from a given parental combination 

are described. These are shown in tables below:               

Table: 6 Table to determine the formula for Pt+1, Qt+1 , … 

      AA
 
*AA AA

 
*Aa AA

 
*aa Aa

 
*Aa

 
Aa

 
*aa 

  Pt Qt Rt St Tt 

AA
 
*AA Pt 1 0 0 0 0 

AA
 
*Aa Qt ¼ ½ 0 ¼ 0 

AA
 
*aa Rt 0 0 0 1 0 
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Aa
 
*Aa St 1/16 1/4 1/8 1/4 ¼ 

Aa
 
*aa Tt 0 0 0 1/4 ½ 

 

From table 6 above, we can write down the equations for the variables  TandSRQP ,,,  by 

summing down the column as defined in equation 11 bellow. 
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SQQ
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                (11) 

Equations 11 are the fractions of the different mating combinations at t+1, given the fraction at 

time t. 

We can determine D, H, and R, the genotype frequencies, given the mating type frequencies P, 

Q, and R,…,Then D, H, and R, are found as follows: 

tttt SQPD
4
1

2
1

1                       (12) 

That is, 1tD  the frequency of AA  at t+1 which is equal all the offspring from AAAA   mating 

plus half the offspring from AaAA   mating, plus one quarter of the offspring from AaAa   

mating. Similarly,                             

ttt

ttttt

TSR

TSRQH

2
1

4
1

1

2
1

2
1

2
1

1







                     (13)   

Table 7 Iterated fractions of the different mating combinations                                                 
                     

 0 1 2 3 4 5 

tttt SQPP
16
1

4
1

1   1.31250 1.60938 1.87009 2.08396 2.25852 2.39982 

ttt SQQ
4
1

2
1

1   0.75 0.8125 0.64063 0.53516 0.43066 0.34985 

tt SR
8
1

1   0.125 0.21875 0.11719 0.10742 0.08154 0.06726 

ttttt TSRQS
4
1

4
1

4
1

1   1.75 0.9375 0.85938 0.65234 0.53809 0.43139 

ttt TST
2
1

4
1

1   0.75 0.8125 0.64063 0.53515 0.43066 0.34985 

 

At time=0 At time=1 At time=2 At time=3 At time=4 At time=5 

P1=1.31250 P2=1.60938 P3=1.87009 P4=2.08396 P5=2.25852 P6=2.39982 

Q1=0.75 Q2=0.8125 Q3=0.64063 Q4=0.53516 Q5=0.43066 Q6=0.34985 

R1=0.125 R2=0.21875 R3=0.11719 R4=0.10742 R5=0.08154 R6=0.06726 

S1=1.75 S2=0.9375 S3=0.85938 S4=0.65234 S5=0.53809 S6=0.43139 
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T1=0.75 T2=0.8125 T3=0.64063 T4=0.53515 T5=0.43066 T6=0.34985 

 

From equation 8, we can generate the frequency for the homozygote dominant gene, 

heterozygote and homozygote recessive gene. 

 

Table 8 The frequency of the homozygote dominant, heterozygote and homozygote 

recessive gene    

TIME            D                 H                R 

0 1.75000 2.50000 0.75000 

1 2.12500 1.75000 0.81250 

2 2.25000 1.50000 0.64063 

3 2.40525 1.18750 0.53516 

4 2.51463 0.96875 0.43066 

5 2.60838 0.78125 0.34985 

6 2.68259 0.63281 0.28278 

             

Discussion 

From table 7 above, it was observe that while the genotype frequency of the offspring of the 

homozygote gene is increasing, that of the heterozygote and homozygote recessive gene continue 

to decrease from generation to generation. As the process continues, the carrier and affected gene 

which in this case is the homozygote recessive gene will reduce until it is totally wiped out from 

the entire population and we will be left with the normal gene. Understanding different diseases 

and their mode of transmission from generation to generation will help in genetic counseling. 

Ignorant of genetic make up of the individual has made many people to marry the wrong partner 

and today they are suffering the consequences of their decision. A situation they would have 

been able to avoid at the initial stage. When the above selection is adopted for a trait that is either 

homozygote dominant or recessive, in a society where inbreeding is being practiced, within some 

period of time, the gene producing the trait will totally be eradicated from such society. So, 

counselors are to advice intending couples the danger of inbreeding and the right genetic 

combination that is safer, if at all they must marry.      
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