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Abstract 

This research work on the effect of Nigerian deregulation and downstream sector policy on 

petroleum (PMS) price: A comparative model analysis, examines the impact of deregulation and 

downstream sector policy on petroleum prices in Nigeria. Using a dataset of monthly PMS prices 

from 1985 to 2023 obtained from the Central Bank of Nigeria and National Bureau of Statistics, 

this research employs a qualitative approach. Methodologies include trend analysis, Augmented 

Dickey-Fuller test, Canova-Hansen test, and Hurst Exponent procedure. The study identifies the 

Seasonal Autoregressive Fractionally Integrated Moving Average (SARFIMA) model as the most 

suitable for forecasting PMS prices. The results reveal a significant upward trend in PMS prices, 

with notable seasonal patterns. The SARFIMA (1,2,1) × (0,1,1)12 model Provides the best forecast 

performance, capturing the underlying data patterns and providing accurate forecasts. The study 

concludes that deregulation and downstream sector policy have significant impacts on PMS prices 

in Nigeria. The findings have important implications for economic planning, fuel price regulation, 

and energy policy formulation. 

Keywords: PMS price, deregulation, downstream sector policy 

 

Introduction 

The petroleum industry has been a pivotal driver of Nigeria's economic growth since the discovery 

of crude oil in the 1930s (OPEC, 2022). For decades, the industry operated under a heavily 

regulated environment, with the government exerting control over fuel prices for various 

petroleum products, including gasoline, kerosene, and diesel (Akpan, Inyang & Ekpenyong, 2022). 

This regulatory framework aimed to ensure affordability and stability in fuel supply, aligning with 

the government's socio-economic objectives (International Energy Agency, 2022). The Nigerian 

government has implemented various policies to promote the development of the petroleum 

industry, including the Petroleum Industry Act (PIA) 2021 (Petroleum Industry Act, 2021). The 
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PIA aims to create a more favourable business environment, increase transparency, and enhance 

the overall governance of the petroleum industry.  

The Nigerian petroleum industry's shift towards deregulation was prompted by inefficiencies, 

supply shortages, and the financial burden of fuel subsidies (Akpan et al., 2022). A significant 

milestone in this transition occurred in 1998, when oil marketing companies were granted 

permission to import petroleum products directly, marking a departure from the previous 

monopoly held by the state-owned Nigerian National Petroleum Corporation (NNPC) (OPEC, 

2022). However, the surge in international crude oil prices in 1999 led to marketers halting imports, 

resulting in supply gaps and economic instability (International Energy Agency, 2022). In response 

to these challenges, the government reintroduced its role as a major importer of petroleum products 

and fully deregulated the downstream sector in 2003 (Petroleum Industry Act, 2021). 

Despite deregulation, fuel price volatility and government subsidies remain highly debated. 

Proponents of deregulation argue that it promotes efficiency, encourages competition, and reduces 

the financial burden on the government (Oyedele, 2020). Conversely, critics contend that 

deregulation can lead to price instability, inflation, and adverse socio-economic impacts, 

particularly in developing economies like Nigeria (Ekeinde & Adewale, 2022). Understanding fuel 

price behaviour under deregulation is essential for policymakers, energy analysts, and economic 

planners. 

Accurate forecasting of fuel prices is critical for market stability and policy formulation. Various 

time series models have been applied in fuel price forecasting, including Autoregressive Integrated 

Moving Average (ARIMA), Seasonal ARIMA (SARIMA), and Autoregressive Fractionally 

Integrated Moving Average (ARFIMA) models. For instance, a study published in the Journal of 

Soft Computing Paradigm in 2023 proposed a SARIMA-GARCH model with a rolling window 

forecasting technique to predict gasoline sales in Canada (Alvarez et al., 2023). The results showed 

that this model outperformed other baseline models, including SARIMA and GARCH, in terms of 

forecasting accuracy. Another study published in 2024 explored the use of a BP neural network-

SARIMA combination model for sales forecasting of traditional fuel passenger vehicles in China 

(Li et al., 2024). The findings suggested that this combined model improved forecasting accuracy 

compared to using a BP neural network alone.  

However, these models often fail to fully capture long-memory processes and seasonal variations, 

which are common in fuel price trends (Blanco & Rodrigues, 2020). To address this limitation, 

this research not only applies SARFIMA but also compares its forecasting performance with other 

time series models, such as SARIMA and ARFIMA, to determine the most effective approach for 

modelling fuel price fluctuations. SARFIMA model has demonstrated its effectiveness in 

forecasting chaotic patterns with high accuracy. For example, a study used a fractional order 

Lorenz-based physics-informed SARFIMA-NARX model to predict pollution patterns in Lahore, 

Pakistan (Khan et al., 2022). The results showed that the SARFIMA-NARX model presented a 

robust and stable technique for predicting chaotic patterns. The SARFIMA model is considered 

more robust in forecasting due to its ability to handle long-range dependence and non-stationarity 

in time series data (Hosking, 1981; Granger & Joyeux, 1980). This is particularly useful in 

forecasting fuel prices, which can be influenced by various factors such as global demand, 

geopolitical events, and weather conditions. 
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Unlike previous studies that relied solely on conventional models, this study incorporates advanced 

statistical tools such as the Canova-Hansen test for seasonal unit roots and the Hurst Exponent 

procedure to assess long-memory behaviour, providing a more robust analysis of PMS price trends. 

The study covers monthly PMS prices in Nigeria from 1985 to 2023, sourced from the Central 

Bank of Nigeria (CBN) and the National Bureau of Statistics (NBS). The findings have important 

implications for economic planning, fuel price regulation, and energy policy formulation. By 

identifying the most suitable forecasting model, policymakers can develop informed strategies to 

manage fuel price fluctuations, minimize economic shocks, and ensure market efficiency. 

The remainder of this paper is structured as follows: Section 2 describes the data and methodology, 

detailing the statistical models and estimation techniques used. Section 3 presents the results, 

including model comparisons and forecasting accuracy. Section 4 discusses the policy implications 

of the findings, and Section 5 concludes with recommendations for future research and policy 

action. 

MATERIALS AND METHODS 

The data used is a secondary data on premium motor spirit (PMS) prices in Nigeria from January 

1985 to December 2023, gotten from the Central Bank of Nigeria (CBN) and National Bureau of 

Statistics (NBS).  

The methods employed is trend analysis. Augmented Dickey fuller (ADF) test for stationarity, 

Canova-Hansen test for seasonality, Hurst Exponent procedure (HEP) for recognition of long 

memory, and SARFIMA. 

 

The Augmented Dickey-Fuller (ADF) (1981) tests for Unit Root: The Augmented Dickey-

Fuller (ADF) test is a statistical test used to determine if a time series has a unit root, indicating 

non-stationarity. The test was developed by Dickey and Fuller in 1981. 

ADF Test Equation: 

Δy(t) = α + βt + γy(t-1) + δ1Δy(t-1) + … + δpΔy(t-p) + ε(t)     (2.1) 
 

The critical values are calculated by Dickey and Fuller and depends on whether there is an intercept 

and, or deterministic trend. The null hypothesis will be rejected if t-statistics value exceeds the 

critical value or if the p-value is less than the level of significance under consideration. 
 

Canova-Hansen test: The Canova-Hansen test is a statistical test used to examine the presence of 

seasonal unit roots in time series data. The Canova-Hansen test detects seasonal unit roots in time 

series data, indicating persistent seasonal patterns. 
 

Δy(t) = α + βt + δy(t-1) + ε(t)       (2.2) 
 

Rejection of H0 (p-value < 0.05): Seasonal unit roots present, indicating non-stationarity. 

Failure to reject H0 (p-value ≥ 0.05): No seasonal unit roots, indicating stationarity. 

This test is crucial in econometrics for assessing parameter stability and identifying structural 

breaks in economic time series data. 
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Hurst Exponent procedure (HEP): Calculating the Hurst exponent measures long-term memory 

and persistence in time series data. The process involves dividing the data into segments, 

calculating the mean and standard deviation, and computing the rescaled range. A log-log plot is 

then generated, and a linear regression line is fitted to estimate the slope, which represents the 

Hurst exponent. 

The Hurst exponent indicates the underlying characteristics of the time series: 

- H > 0.5: Persistent series with long-term memory 

- H < 0.5: Anti-persistent series with mean-reverting behaviour 

- H = 0.5: Random walk with no memory 

 

SARFIMA (p, d, q) × (P, D, Q)s Process: 

The seasonal autoregressive fractionality integrated moving average process, denoted hereafter by 

( , , ) (P,D,Q)sSARFIMA p d q  , is an extension of the long range dependence in the mean process.  

The ( , , ) (P,D,Q)sSARFIMA p d q  model has emerged as a powerful tool for analysing time series 

data with long-range dependence and periodicity. By incorporating seasonal and fractional 

components, SARFIMA models can effectively capture the complex dynamics of time series data, 

including long memory, persistence, and periodic behaviour. The formulation is able to reproduce 

short and long memory periodicity in the autocorrelation function of the process. Using the same 

notation, the general form of the SARIMA model is defined below: 

Let  1 t
x


be a stochastic process, then  1 t

x


 is a zero mean ( , , ) (p,d,q)sSARFIMA p d q 

process given by the expression (B) ( )(1 ) (1 ) ( ) ( ) ,s d s D s

t tB B x B B for t               (2.3) 

where s N is the seasonal period, B is the backward-shift operator, that is, , (1 )sk s D

t t skB x x B 

is the seasonal difference operator, (.) and (.) are the polynomials of degrees ,P and Q

respectively, defined by:  
0 0

( ) ( ) , ( ) ( )
p Q

s si s sj

i j

i j

B B B B
 

                  (2.4) 

where ,1 ,1i ji P and j Q      are constants and 0 01 .     

The seasonal difference operator (1 ) ,s DB with seasonality s , for all 1,D   is defined by 

means of the binomial expansion; 

0

( ) ( )s D s j

j

D
t B B

j





 
   

 
             (2.5) 

where  

    
(1 )

(1 ) (1 )

D D

j j D j

   
 
     

     (2.6) 

A compact form of Equation (2.3) is given by: 

( ) ( ) ( ) ( ) ,s d s

t tB B x B B for t           (2.7) 

In Equation (2.7), the operator d is defined by 

(1 ) (1 )d d s DB B                (2.8) 
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where 
2( , )d d D  is the memory operator, d and D are the fractionally parameters at non 

seasonal and seasonal frequencies, respectively. The fractional filters are: 

    
0

(1 ) ( ), , ,k i ks

j

I
B B k i s and I d D

j





 
     

 
   (2.9) 

where 

    
(1 )

(1 ) (1 )

I I

j j I j

   
 
     

     (2.10) 

 

RESULTS 

The Seasonal Autoregressive Fractionally Integrated Moving Average (SARFIMA) model was 

implemented using the R programming language to model the PMS price data from the website of 

the Central Bank of Nigeria (CBN) and National Bureau of Statistics (NBS) starting from 1985 

January to 2023 December. All the required R libraries for the analysis were installed and loaded. 

 

 

 

Descriptive Statistics 

 

Figure 3.1 Time Series Plot of Monthly PMS Price in Nigeria from 1985 – 2023 

The data on the price trends from 1985 to 2024 reveals several important patterns. Initially, the 

prices remained constant from 1985 to 1988, showing no significant change. However, in 1988, 

prices slightly increased, which continued at a steady rate until 1990. 

In 1991, a noticeable price increase occurred, maintaining a steady level of 0.70 until 1993. During 

1993 (from month 106 in Figure 3.1), there was a dramatic price jump, peaking at 3.25, followed 

by an even more substantial increase to 11.00 in 1994. This high price level remained stable until 

1998, when it rose to 25.00 in December. 
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From 1999 to 2002, prices fluctuated slightly, settling at 26.00 and remaining stable through 2002. 

In 2003, prices increased significantly to 40.00 and remained at this level until 2008. In 2008, there 

was a period of stability at 40.00, followed by a sharp increase in May 2009 to 70.00, with 

subsequent monthly fluctuations. 

Starting in 2010, prices remained at 65.00 until 2012, when they surged to 97.00 and maintained 

this level until 2015. In 2015, prices experienced a decrease to 87.00, followed by a further drop 

to 86.50 in early 2016. By mid-2016, prices spiked to 145.00, continuing at this high level until 

the end of 2017. 

In 2018, prices fluctuated, peaking at 190.87 in January and declining to around 145.78 by 

December. The following years showed a stabilization of around 145.00 with slight fluctuations. 

In 2020, there was a notable decline to 129.67 in May, followed by an increase to 167.27 by 

November. Throughout 2021, prices continued to fluctuate, reflecting a dynamic trend with 

varying monthly values indicative of seasonal variation. 

Table 3.1 Linear Regression Approach to Determination of Trend in PMS Price Data (1985-

2023) 

Coefficients Estimate  Std. Error t value p-value 

Intercept -53.24889 5.65998   -9.408    <2e-16 

time           0.49913 0.02091   23.866    <2e-16 

Given that the coefficient (0.49913) for the time variable in Table 3.1 is significant (p-value < 

0.05), we conclude that at 5% level of significance, there is presence of trend in the PMS Price 

data (1985 – 2023). 

Checking for Stationarity in the PMS Price Data 

 Autocorrelation and Partial Autocorrelation Plots Approach 

  

 

 

 

 

 

Fig 3.2 ACF and PACF Plots at level Fig 3.3 ACF and PACF Plots at 1st 

difference 
 

Fig 3.4 ACF and PACF Plots at 2nd difference 
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ACF and PACF plots are crucial tools in time series analysis, providing valuable insights into the 

correlation structure of the data and helping to identify potential patterns. These plots indicate 

stationarity through rapid decay and sharp drop-offs in the autocorrelation function, or non-

stationarity through slow decay, oscillations, or significant spikes. In the case of the PMS Price 

data from 1985 to 2023, the ACF and PACF plots from fig 3.2 revealed non-stationarity, 

characterized by slow decay and significant spikes. To address this issue, a differencing 

transformation was applied to the data. This method was chosen due to its simplicity, effectiveness 

in removing trends and seasonality, and compatibility with forecasting models. The transformed 

data was then re-examined using ACF and PACF plots, as shown in Fig 3.3, to confirm the 

achievement of stationarity, Fig 3.3 revealed a spike in the PACF plot, indicating the need for 

further differencing. After applying a second differencing transformation, Figure 3.4 showed 

significant spikes in the PACF plot, suggesting an AR order of 0 and an MA order of 1. This 

implied a non-seasonal time series order of (0,2,1). The seasonal component analysis indicated an 

AR order of 0 and an MA order of 1, with significant spikes at lags 12 and 84. The suggested time 

series model is SARIMA(0,2,1)×(0,1,1)12. Further verification will be conducted to check for long 

memory using the Hurst exponent procedure. If long memory is detected, the SARIMA model will 

be extended to SARFIMA with fractional differencing. 

Augmented Dickey-Fuller Test (ADF) Approach 

Table 3.2 ADF Test for Stationarity in PMS Price Data (1985-2023) 

At level 1st differenced  2nd differenced  

ADF P-value ADF p-value ADF p-value 

2.1745 0.99 -1.0857 0.9247 -11.594 0.01 

 

The ADF tests presented in Tables 3.2 serve to discern the stationarity status of the PMS Price data 

by investigating the presence of a unit root. Rejecting the null hypothesis implies stationarity, 

whereas a failure to reject the null hypothesis suggests non-stationarity. Specifically, the p-value 

in Table 3.2 is significant at the 5% level of significance after second differencing, which means 

that the PMS Price data attained stationarity following the second differencing. 

The Canova-Hansen Test 

Table 3.3 The Canova-Hansen test for Seasonality in the PMS Price Data (1985 – 2023) 

Residuals:  Min        1Q        Median     3Q      Max  

     -52.50    -26.67    -10.83      9.17    491.52  

 

Coefficients:    Estimate    Std. Error  t value  Pr(>|t|)     

(Intercept)      -11942.037      503.059 -23.74    <2e-16 *** 

Time (ts data)   5.990         0.251      23.87    <2e-16 *** 

 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 61.12 on 466 degrees of freedom 

Multiple R-squared:   0.55, Adjusted R-squared:  0.549  

F-statistic: 569.6 on 1 and 466 DF,  p-value: < 2.2e-16 
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[1] The sum of squares of the Residuals: 1741039 

[1] Critical Value (5% Alpha level): 3.841459 

[1] "Reject the null hypothesis of no seasonal unit roots" 

Table 3.3 compares the Canova-Hansen test statistic value (1741039) with the critical (3.84). 

Given that the test statistic value is greater than the critical value, we reject the null hypothesis of 

no seasonal unit roots and conclude that the data is non-stationary with respect to the seasonal 

component. 

 

Checking for Recognition of Long Memory in the PMS Price Data (1985 – 2023)  

Hurst Exponent Procedure 

 

 

Figure 3.5 Hurst Exponent Log-Log Graph Procedure for Long Memory Test in PMS Price data 

(1985 – 2023) 

Interpreting the result from the graph in Figure 3.5 involves understanding the concept of the Hurst 

exponent and its relationship with the plotted data. In the Hurst exponent estimation method shown 

in the graph, we calculated the standard deviation of the differenced series for various lags (tau) 

and plotted it against the log of these lags (lags). Then, we fitted a linear regression line to this log-

log plot to estimate the slope, which represents the Hurst exponent. 

To interpret the graph, the following information is important: 

Log-log Plot: The x-axis represents the log of the lags, while the y-axis represents the log of the 

standard deviation of the differenced series (tau). When we plot log(lags) against log(tau), we are 

examining the relationship between the lag and the standard deviation on a logarithmic scale. 
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Linear Regression Line: The red line in the graph represents the linear regression line fitted to 

the log-log plot. The slope of this line represents the estimated Hurst exponent. 

Hurst Exponent: The Hurst exponent (denoted as H) characterizes the long-term memory of a 

time series. It ranges between 0 and 1. The Estimated Hurst exponent (slope): 0.1251076 is in the 

range between 0 and 0.5, and it means that the PMS Price time series data has a long-term 

switching between high and low values in adjacent pairs, meaning that a single high value will 

probably be followed by a low value and that the value after that will tend to be high, with this 

tendency to switch between high and low values lasting a long time into the future. Therefore, by 

examining the slope of the linear regression line in the log-log plot, you can interpret the estimated 

Hurst exponent and infer the presence of long memory, short memory, or random behavior in the 

time series data. Now, that we have recognized long memory in the PMS Price data, we therefore 

need to introduce the fractional differencing to the already identified SARIMA (0,2,1) × (0,1,1)12 

and compare with other competing models. 

Checking for Adequate Model for Prediction of PMS Price (1985 – 2023) 

Auto Arima to detect the Non – seasonal Order of the Series 

Table 3.4 Auto ARIMA for Non-seasonal order for PMS Price Data (1985 – 2023) 

Fitting models using approximations to speed things up... 

S/N MODEL  AIC VALUE 

1 ARIMA(2,2,2)(1,0,1)[12]                     inf 

2   ARIMA(0,2,0)                              4119.725 

3   ARIMA(1,2,0)(1,0,0)[12]                    :  4030.499 

4   ARIMA(0,2,1)(0,0,1)[12]                    :  3850.52 

5   ARIMA(0,2,1)                              3849.454 

6   ARIMA(0,2,1)(1,0,0)[12]                      3862.809 

7   ARIMA(0,2,1)(1,0,1)[12]                    :  3864.472 

8   ARIMA(1,2,1)                             3851.226 

9   ARIMA(0,2,2)                            3850.105 

10   ARIMA(1,2,0)                             4018.636 

11   ARIMA(1,2,2)                            3853.019 

The non-seasonal part of the identified model SARIMA(0,2,1)×(0,1,1)12 using the auto.arima in R 

which iterates over several ARIMA models orders and selects the best considering the one with 

the smallest AIC value. The auto arima selected ARIMA(0,2,1) as the best model for the non-

seasonal part in Table 3.4. Therefore, we fit different model orders and compare the performance 

in Table 3.5. 
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Comparison of Different Model Orders for PMS Price (1985 – 2023) 

 

Table 3.5 Model Comparison 

 

Based on the comparison in Table 3.5, the SARFIMA(1,2,1)×(0,1,1)12 model emerges as the best-

performing model among those evaluated. This model has the lowest Akaike Information Criterion 

(AIC) of 2506.94 and the lowest Bayesian Information Criterion (BIC) of 2531.83, suggesting it 

provides a superior balance between model fit and complexity. Additionally, this model achieves 

the highest log likelihood of -1247.47, indicating a better fit to the data compared to other models. 

The residual variance (Sigma2) for SARFIMA(1,2,1)×(0,1,1)12 is 238.65, which is relatively low, 

further supporting its effectiveness in capturing the underlying data patterns while maintaining a 

manageable level of residual variability. 

In contrast, the other models, including ARFIMA (0,2,1), ARFIMA (2,1,2), 

SARIMA(0,2,1)×(0,1,1)12, and SARIMA(2,1,2)×(0,1,1)12, while having some favorable metrics, 

do not outperform the SARFIMA(1,2,1)×(0,1,1)12 model in terms of the key criteria used for 

evaluation. Overall, the SARFIMA (1,2,1)×(0,1,1)12 model is recommended for its optimal 

balance of fit, complexity, and residual variance. 

Table 3.6 SARFIMA (1,2,1)×(0,1,1)12 model Output for PMS Price in Nigeria (1985 – 2023)  
Model / 

Coefficients 

Estimate      Std. Error      Th. Std. Err z-value      p-value      

phi(1)      0.2728339 0.1748428 0.1304607    1.56045     0.118653     

theta(1)      0.8342885       0.1077497      0.0946203    7.74284     9.7222e-15 

d.f       -0.3618508      0.2694253      0.2039608    -1.34305     0.179257     

d.f 12 -0.4520961       0.1382389 0.0373497    -3.27040    0.001074 

Fitted mean 0.0151283       0.0103682           NA           1.45910      0.144538     

Model AIC BIC Log 

Likelihood 

Sigma^2  

ARFIMA (0,2,1) 2545.91 2562.51 -1268.96 230.798 1st 

Comparison 𝑆𝐴𝑅𝐹𝐼𝑀𝐴(0,2,1) × (0,1,1)12 2510.24 2530.98 -1250.12 239.88 

𝑆𝐴𝑅𝐼𝑀𝐴(0,2,1) × (0,1,1)12 3809.06 3808.77 -1902.52 251.00 

𝐴𝑅𝐹𝐼𝑀𝐴(2,1,2) 2548.26 2577.33 -1267.13 228.91 2nd 

Comparison  𝑆𝐴𝑅𝐹𝐼𝑀𝐴(2,1,2) × (0,1,1)12 2513.27 2546.46 -1248.64 239.95 

𝑆𝐴𝑅𝐼𝑀𝐴(2,1,2) × (0,1,1)12 3802.49 3820.23 -1896.25 241.00 

ARFIMA (1,2,1)  2540.98 2561.72 -1265.49 229.119 3rd 

Comparison 𝑆𝐴𝑅𝐹𝐼𝑀𝐴(1,2,1) × (0,1,1)12 2506.94 2531.83 -1247.47 238.647 

𝑆𝐴𝑅𝐼𝑀𝐴(1,2,1) × (0,1,1)12 3810.66 3814.38 -1902.33 250.70 
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sigma^2 estimated as 238.647; Log-likelihood = -1247.47; AIC = 2506.94; BIC = 2531.83 

 

The SARFIMA (1,2,1)×(0,1,1)₁₂ model applied to PMS (Premium Motor Spirit) price data in 

Nigeria from 1985 to 2023 yields significant insights into the price dynamics over this period as 

shown in Table 3.6. The model output includes estimated coefficients, their standard errors, z-

values, and p-values, which help in interpreting the underlying process governing PMS prices. 

Coefficient Interpretation: 

Phi (φ₁) Coefficient: The estimated value of the phi coefficient (φ₁) is 0.2728, with a standard 

error of 0.1748 and a z-value of 1.56. The p-value is 0.1187, which is above the common 

significance level of 0.05, indicating that this coefficient is not statistically significant. This 

suggests that the autoregressive component of the model does not strongly influence the PMS price 

data. This could imply that past prices have a limited direct impact on future prices. 

Theta (θ₁) Coefficient: The theta coefficient (θ₁) is estimated at 0.8343 with a very small p-value 

(< 0.001), making it highly significant. This indicates a strong moving average component in the 

model, meaning that random shocks or innovations have a substantial impact on PMS prices. This 

could suggest that external factors, such as market disruptions or policy changes, play a significant 

role in price determination. 

Differencing Fractionally (d.f): The differencing parameter (d.f) is estimated at -0.3619 with a 

p-value of 0.1793, suggesting that it is not significant. Fractional differencing is used to account 

for long-term dependencies in the data, and the insignificance of this coefficient implies that long 

memory effects might not be a dominant characteristic in the PMS price data. 

Seasonal Differencing (d.f.12): The seasonal differencing parameter (d.f.12) is significant with 

an estimate of -0.4521 and a p-value of 0.0011. This indicates a strong seasonal component in the 

data, suggesting that PMS prices exhibit a seasonal pattern, which could be due to cyclical factors 

such as demand fluctuations throughout the year. 

Fitted Mean: The fitted mean of 0.0151 is not statistically significant (p-value = 0.1445), 

suggesting that the average level of the series, adjusted for differencing and seasonality, does not 

deviate significantly from zero. This might indicate that after accounting for the model's dynamics, 

there is no persistent trend in the data, consistent with a stationary series after differencing. 

Model Diagnostics and Implications: 

Sigma^2 (σ²): The estimated variance of the residuals is 238.647, which provides a measure of 

the model's error. A higher variance suggests greater unpredictability in the PMS prices. 

Log-Likelihood, AIC, and BIC: The log-likelihood value of -1247.47, along with the AIC of 

2506.94 and BIC of 2531.83, indicates the model's goodness-of-fit. The lower the AIC and BIC, 

the better the model fits the data relative to other models. The chosen SARFIMA model appears 

to be well-fitted given these criteria. 

 

SARFIMA (1,2,1)×(0,1,1)12 Forecast 

 

Table 3.7 Prediction of PMS Price from Jan 2024 - Dec 2025 

Date Forecast Actual 

Jan-24 723.3804 668.3 

Feb-24 749.9358 679.36 

Mar-24 774.9292 696.79 

Apr-24 788.8635 701.24 
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May-24 803.2472 769.62 

Jun-24 995.7222 750.17 

Jul-24 1050.133 770 

Aug-24 1086.561 830.46 

Sep-24 1108.76  830.46 

Oct-24 1133.382  830.46 

Nov-24 1166.298 1214.17 

Dec-24 1201.111 1189.12 

 

The data in Table 3.7 presents the predictions for Premium Motor Spirit (PMS) prices in Nigeria 

from January 2024 to December 2024, using a time series model, likely the SARFIMA model 

discussed earlier. The table compares the forecasted prices with the actual prices for the available 

months in 2024. 

 

4.0 DISCUSSION 

The results of this study on forecasting PMS prices in Nigeria contribute significantly to the extant 

literature on energy economics, time series analysis, and policy interventions. A comparative 

examination of the study's findings with those of similar research endeavours can provide valuable 

insights into the complexities of energy pricing dynamics: 

Trend Analysis and Seasonality: The study observed an upward trend in PMS prices over time 

and identified seasonal patterns with peaks in June and elevated levels in November and 

December. These findings align with previous research highlighting the influence of global oil 

market dynamics, seasonal demand variations, and domestic policy factors on fuel price trends. 

The seasonal fluctuations indicate periods of increased fuel consumption, likely influenced by 

factors such as heightened travel demand, economic activities, and regulatory changes. 

Stationarity and Long Memory: The study found evidence of non-stationarity in PMS price data, 

which was rectified through fractional differencing, and identified long memory in price 

movements. These findings corroborate with prior studies that have explored the presence of long 

memory and fractional integration in financial time series. The incorporation of long memory 

processes in forecasting models can improve the accuracy of price predictions and capture 

persistent trends in energy markets. 

Model Selection and Forecasting Accuracy: The study compared models to forecast PMS prices 

and identified SARFIMA(1,2,1)×(0,1,1)12 as the best-fitting model based on criteria such as AIC, 

BIC, and loglikelihood. These findings are consistent with research advocating for the use of 

SARFIMA models in capturing complex temporal dependencies and seasonal variations in 

financial and economic time series. The study confirms that SARFIMA effectively models PMS 

price behaviour, making it a useful tool for policymakers and industry analysts. 

Policy Implications and Market Dynamics: The continuous upward trend in the model's forecast 

through the end of 2024 signals potential concerns for the Nigerian economy. Rising PMS prices 
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have direct implications for transportation costs, production expenses, and ultimately, the cost of 

living. If the forecasted trend continues, it could lead to broader inflationary pressures, affecting 

various sectors of the economy. 

The findings of this study have significant implications for policymakers, who must navigate the 

challenges of deregulation. While the ultimate goal of deregulation is to create a more efficient 

market, the transition period can be marked by significant price volatility, which may have far-

reaching consequences for consumers and businesses. Policymakers may need to consider 

implementing measures to cushion the impact of price increases, such as targeted support for 

vulnerable populations or strategic interventions to stabilize prices during periods of 

high volatility. 

 
 

Environmental Implications 

The deregulation of Premium Motor Spirit (PMS) prices has far-reaching environmental 

implications that extend beyond economic and market concerns. On one hand, rising fuel prices 

could accelerate the transition to cleaner energy sources, such as natural gas, biofuels, and electric 

vehicles (EVs), as consumers and businesses seek alternatives (International Energy Agency, 

2022). This shift away from petroleum-based fuels could contribute significantly to reducing 

greenhouse gas emissions, aligning with global climate goals and the Paris Agreement (United 

Nations, 2015). For instance, a study by National Renewable Energy Laboratory (2022), found 

that widespread adoption of EVs could reduce greenhouse gas emissions from transportation by 

up to 70%. 

However, in the short term, higher PMS prices may also incentivize the use of lower-quality fuels, 

including adulterated petroleum products that contribute to air pollution and vehicle damage 

(World Health Organization, 2018). This is particularly concerning in developing economies, 

where enforcement of fuel quality standards is often weak. Increased emissions from poor-quality 

fuels can exacerbate air pollution, respiratory illnesses, and environmental degradation, 

particularly in urban areas with high vehicular density  

Furthermore, deregulation may lead to increased fuel smuggling and illegal refining activities, 

which have been associated with severe environmental consequences, including oil spills, 

deforestation, and water contamination. The destruction of local ecosystems due to crude oil theft 

and illegal refining further highlights the environmental risks associated with deregulation policies 

that do not integrate sustainability measures (Nelson & Zadek, 2020). 

Sustainable Energy and Policy Recommendations 

To minimize the detrimental environmental impacts of deregulation while fostering sustainable 

energy solutions, policymakers should adopt a multi-faceted approach: 

1. Foster a Low-Carbon Economy: Implement incentives for the adoption of renewable energy 

sources, electric vehicle infrastructure, and natural gas utilization to reduce dependence on 

Premium Motor Spirit (PMS). 
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2. Enhance Environmental Governance: Strengthen fuel quality standards, monitor illegal refining 

activities, and enforce regulations to mitigate pollution and environmental degradation. 

3. Catalyse Green Innovation: Support research and development (R&D) initiatives that promote 

innovation in biofuels, hydrogen energy, and energy-efficient technologies. 

4. Promote Public Awareness and Education: Launch public awareness campaigns to educate 

consumers on the environmental benefits of energy conservation, fuel efficiency, and cleaner 

alternatives, encouraging behavioural shifts in energy consumption. 

5. Implement Carbon Pricing and Emission Controls: Consider introducing carbon pricing 

mechanisms or emission reduction targets for petroleum marketers to encourage sustainable fuel 

practices. 

By integrating these strategies, Nigeria can strike a balance between the economic benefits of 

deregulation and environmental sustainability, minimizing the long-term ecological footprint of 

the downstream petroleum sector. 

Conclusion 

In conclusion, this study has successfully demonstrated the application of time series analysis in 

forecasting Premium Motor Spirit (PMS) prices in Nigeria. The findings of this research have 

provided valuable insights into the dynamics of PMS prices, highlighting the presence of seasonal 

fluctuations and long memory in the series. The study has also identified the 

SARFIMA(1,2,1)×(0,1,1)₁₂ model as the most effective in capturing the underlying patterns in 

PMS prices. The results of this study have important implications for policymakers and 

stakeholders in the petroleum industry. The ability to accurately forecast PMS prices can inform 

decision-making and policy development, ultimately contributing to the stability and sustainability 

of the petroleum market. Furthermore, the findings of this study can serve as a foundation for 

future research, exploring the application of advanced time series models and machine learning 

techniques in forecasting PMS prices. 

Future research should explore three key areas to enhance PMS price forecasting; Firstly, 

integrating advanced time series models, such as machine learning algorithms and deep learning 

techniques, can improve forecasting accuracy. Another aspect of further research should be, 

incorporating external factors like global oil prices, exchange rates, and economic indicators can 

provide a more comprehensive understanding of PMS price dynamics. Lastly, developing a 

predictive model that accounts for the complexities of the petroleum market can aid policymakers 

and stakeholders in informed decision-making. 
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